INTRODUCTION

The California Coastal Monitoring Program (CMP) lists estimates of smolt and returning adult abundance at Life Cycle Monitoring Stations as the basis for estimating freshwater and ocean survival systems (ie N(time ${ }^{2}$)/N(time ${ }^{1}$) (Adams et al 2011) Unfortunately the difficulties inherent in operating trapping facilities during high water conditions prevalent during winter-time coho and steelhead migration periods make this a difficull t task (Figure 1).

Seasonal and unpredicted data gaps are caused by trap failures due to high flow events and the fact that traps are typically operated only during "peak" migration seasons for smolts and adults (Figure 2) .

Figure 2. Individuals captured each week during adult and
background indicates when the traps were operational.
An additional problem is that life-cycle monitoring programs are often conducted in smaller, headwater streams located far away from the ocean thus leading to estimates of survival that may be confed 55 km from the Pacific O .ean, estimates of marine survival are confounded with riverine and estuarine survival (Figure 3).

Mill Creek Watershed
$58 \mathrm{~km}^{2}$ watershed, 29 km $58 \mathrm{~km}^{2}$ watershed,
salmonid habitat

Life cycle monitoring stream for coho and steelhead

- Coho conservation hatchery program
.55 km from Pacific Ocean
Riverine and estuarine survival confounded with marine survival

Figure 3. Map of Mill Creek located in the Russian River watershed, California

OBJECTIVES

1. Document year-round fish movement patterns through key habitats in the Russian River using PIT tag detection systems. 2. Estimate life-stage specific survival of coho populations by applying the multistate emigration model to Mill Creek data.

FIELD METHODS

FDX PIT tag detection systems placed at key habitat transitions along migration corridor (Figure 4).
Flat plate antennas operated year-round in conjunction with seasonal smolt trap on Mill Creek.
PIT-tagged juvenile coho released into Mill Creek in the fall.

Figure 4 . Map of PIT Tag detect
the Rusian R River watershed.
MULTISTATE EMIGRATION MODEL
Separate mortality from pre-smolt emigration using an individual-based model incorporating continuous emigration detection data (e.g. PIT detections) and data from discrete sampling events (Horton et al. 2011) (Figure 5),
Applied model through the smolt stage for five cohorts and through the adult stage for one cohort (Program MARK, White and Burnham 1999).
Used a simulation approach to gain an understanding of the relationship between the number of individuals tagged and precision over a range of survivals.

RESULTS

Year-round juvenile movement patterns:
Juvenile coho were detected emigrating from Mill Creek during fall and winter prior to installation of a smolt trap each year (Figure 6).
Proportion of juveniles moving during fall and wintered varied by year (Figure 6)

Estimates of true survival and pre-smolt emigration: Individuals leaving Mill Creek prior to $3 / 1$ were considered presmolt emigrants.
The multistate emigration model was used to estimate fall to smolt survival and pre-smolt emigration for five cohorts of coho salmon in Mill Creek (Figure 7).

- Fork length at tagging in the fall was used as an individual covariate in the multistate emigration model to test for a relationship between size and pre-smolt emigration. Fish that were larger in the fall had a higher probability of emigrating prior to $3 / 1$ (Figure 8).

RESULTS (continued

Application of full life cycle model

The multistate emigration model was used to estimate juveni overwinter survival, pre-smolt emigration, and estuarine marine survival for the 2010 Mill Creek cohort (Figure 9).

Simulations: How many fish do I need to PIT tag?
We simulated data sets with a range of underlying probabilities (true survival, emigration, antenna detection, trap recapture) based on observed data from five years of coho salmon monitoring of fish tagged in Mill Creek.
Simulated data sets were then input to Program MARK using the multistate emigration structure to obtain estimates of pre smolt emigration and survival to the smolt and adult stages. Estimates of true survival were evaluated by plotting the coefficient of variation (CV) as a function of number of PITtagged smolts and stage-specific survival (Figure 10).

REFERENCES

P. Gallagher, M. Lacy T. MC

 Coastal salmonid population monitoring: Strategy, des180. California Department of Fish and Game. 82 pp.
 transponder tagged population of stream fish. Transactions of the American fisheries transponder tagged
Society $140,320-333$
White, G. C. and Burnham, K. P. . 1999. Program N.
of marked animals. Bird Study 46: $120-139$.

ACKNOWLEDGEMENTS

ot be possible without the dedicated field and hatchery
crews and the gracious support of hundreds of private landowners.

