PIT Antenna Technology: An Array of Applications in the Russian River Watershed

Mill Creek Watershed

- 23 mi² (60 km²) watershed,
 ~ 11 mi (18 km) long stream
- Life cycle monitoring to evaluate Coho broodstock program
- PIT tag a portion of hatchery Coho releases
- Track movement, growth and survival of several release groups from yoy to adult stage

Started with traps as fixed counting stations

Smolt abundance:

 downstream migrant trap (DARR- Darroch Analysis with Rank Reduction)

Adult returns:

 adult trap in combination with spawner surveys (capture-mark-recapture)

1-trap DARR (no PIT tags in early days)

• Capture fish in trap

M = Finclip at trap (8 combinations)

- **R** = Release upstream & recapture at trap
- U = unmarked capture in trap

*N-hat is based marked: unmarked

Trap avoidance and mortality

Installed upright antenna (16' x 2.5')

2-trap DARR (PIT & non-PIT)

• Fish swim past antenna

M = PIT tags detected at antenna

- **R** = PIT tags detected at antenna & trap
- **U** = non-PIT & antenna only detected in trap

**N-hat* is based marked: unmarked

of the fish...whatdetected onproportion werethisfirst detected onantenna...this antenna?

efficiency

Minimum count

movement direction

Expanded count

Adult Coho Salmon Returns to the Russian River

Return season

Multistate Emigration Model

- use PIT tag detections at year-round paired antennas to estimate true S, p, & emigration for PIT tagged fish
- derived estimates of N for PIT-tagged fish
- estimates of *N* for all fish by using ratio of PIT to non-PIT

Overwinter Survival: Mill Creek Fall Release

Multi-state Emigration Model Closed Robust Design Formulation

Post-restoration

Estimation Parameters and Approaches (expanded count & abundance)

Parameter	Field method	Estimation method	Population segment	Ancillary information
Abundance-with CI (smolts-LCM)	Antenna array and trap	1-trap DARR	All	None – (marked: unmarked in trap)
Expanded count-no CI (adults, smolts- LCM)	Multiple antennas within array	Adjust for efficiency	PIT only	Known or estimated ratio of PIT to non-PIT
Abundance-with CI (adults, smolts-LCM)	Multiple antennas within array & multiple arrays	Multistate emigration model	PIT only	Known or estimated ratio of PIT to non-PIT

Estimation Parameters and Approaches (expanded count & abundance, true survival & emigration)

Parameter	Field method	Estimation method	Population segment	Ancillary information
Abundance-with CI (smolts-LCM)	Antenna array and trap	1-trap DARR	All	None – (marked: unmarked in trap)
Expanded count-no CI (adults, smolts- LCM)	Multiple antennas within array	Adjust for efficiency	PIT only	Known or estimated ratio of PIT to non-PIT
Abundance-with CI (adults, smolts-LCM)	Multiple antennas within array & multiple arrays	Multistate emigration model	PIT only	Known or estimated ratio of PIT to non-PIT
Emigration timing/ habitat use	Single PIT antenna	Summary stats, graphical	PIT only	None – inference to non-PIT
True survival & emigration	Multiple antennas within array & multiple arrays	Multistate emigration model	PIT only	None – inference to non-PIT

Simplex

• Example: telephone

Half-Duplex (HDX) Arrays

- HDX PIT tags have internal capacitors
- HDX readers generate short interval magnetic pulses.
- Magnetic pulses charge capacitors inside tags within range, which then use stored energy to send the tag info back to the reader

Pros

- Simple antenna design
- Multiple tags can be within antenna field without signal interference
- Antennas can be larger (up to 190'), water separation not needed
- Uses less power than FDX since field is pulsed; longer battery life

Cons

- Internal capacitors limit tag size (12mm now available)
- Slower detection rate than FDX (14 detections/second)
- Single antenna setups are more vulnerable to system failure

HDX swim through PIT antenna on the San Joaquin River (image: Bureau of Reclamation)

Full-Duplex (FDX) Arrays

- FDX PIT tags lack internal capacitors
- FDX readers continuously emit magnetic charges as opposed to HDX that send pulse charges

Pros

- Smaller tag sizes than HDX (8-32mm)
- Higher detection rate (30 detections/second)
- Ongoing R&D
- Variety in antenna designs (pass-by, floating, disc, cord, wand, etc.)
- User friendly software
- Status reporting
- Tag sensors

Cons

- When a tag is within FDX reader field, creates signal interference.
- Smaller antenna size (20' max)
- Susceptible to external sources of noise (pumps, ferrous metal, salt, Navy testing)

Selecting a tag

- Both HDX and FDX tags can read at same frequency (134.2kHz)
- Many venders (Biomark, Oregon RFID, AVID, BTS-ID, UID, etc.)
- HDX tag detection can be enabled on Biomark FDX readers

- 50-59mm fork length \rightarrow 8mm tag
- 60-130mm fork length \rightarrow 12mm tag
- 131mm+ fork length \rightarrow 23mm tag

Тад	Tag type	Length (mm)	Diameter (mm)
Oregon RFID FDX-B "skinny"	FDX	8	1.4
Biomark Mini HPT8	FDX	8.4	1.4
UID FDX	FDX	8.5	1.4
Biomark HPT9	FDX	9	2.1
Biomark HPT10	FDX	10	1.4
Biomark HDX12	HDX	12	2.1
Oregon RFID FDX-B XL	FDX	12	2.15
Oregon RFID HDX+ tag	HDX	12	2.12
UID FDX	FDX	12	2.1
Biomark HPT12	FDX	12.5	2.1
Biomark HPT23	FDX	23	2.1
Oregon RFID HDX+ tag	HDX	23	3.65
Oregon RFID HDX+ tag	HDX	32	3.65

Powering your array

AC

- Reliable power source however, power outages tend to occur during high value fish movement windows
- Requires outlet in close proximity to array (<100')
- Must have switcher to avoid noise interference
- Monthly cost

Solar

- Site selection very important
- Predictable lulls in power input
- Upfront cost

Batteries

- Most reliable power source
- Requires frequent battery swaps
- Lugging batteries

Other alternative power sources: propane and wind

SPECIALISTS IN IDENTIFICATION SOLUTIONS

